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On the Lagrangian description of unsteady 
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(Received 17 March 1989 and in revised form 3 July 1989) 

A theory to explain the init(ia1 stages of unsteady separation has been proposed by 
Van Dommelen & Cowley (1990). In the present paper, this theory is verified for the 
separation process that occurs at the equatorial plane of a sphere or a spheroid which 
is impulsively spun around an axis of symmetry. A Lagrangian numerical scheme is 
developed which gives results in good agreement with Eulerian computations, but 
which is significantly more accurate. This increased accuracy, and a simpler 
structure to the solution, also allows verification of the Eulerian structure, including 
the presence of logarithmic terms. Further, while the Eulerian computations broke 
down at the first occurrence of sepa,rat,ion, it is found that, the Lagrangian 
computation can be continued. It is argued that this separated solution does provide 
useful insight into the further evolution of the separated flow. A remarkable 
conclusion is that  an unseparated vorticity layer at the wall, a familiar feature in 
unsteady separation processes. disappears in finite time. 

1. Introduction 
In Part 1, Van Dommelen & Cowley (1990) proposed a Lagrangian description for 

unsteady separation under a wide range of conditions. This theory has been verified 
in a number of two-dimensional unsteady boundary-layer computations, the first 
being the one by Van Dommelen & Shen (1980, 1982) for a circular cylinder which 
is impulsively set into motion in the direction normal to its axis. Yet it seems 
somewhat unsatisfactory that the verification of basic aspects of the theory should 
depend solely on two-dimensional unsteady computations, since by necessity their 
resolution is much lower and their convergence questions more complex than one- 
dimensional computations. This motivated the present examination of the separation 
process which occurs at the equatorial plane of a sphere which is impulsively rotated. 

This separation process was first described by Banks & Zaturska (1979), who 
proposed an analytical description in the form of a power series in time. However, 
Simpson & Stewartson (1982) argued that there would also be higher-order 
logarithmic terms in the expansion. (Interestingly, Banks & Zaturska 1981 
discovered the presence of logarithmic terms in a flow previously studied by Bodonyi 
& Stewartson 1977, cf. Part 1.) The physical separation process was explained in 
Lagrangian terms by Van Dommelen (1981), who proposed that separation would 
cause the boundary layer to divide into an unseparated vorticity layer at the wall 
and a separated one above it. His proposals agree with the Eulerian expansions of 
Simpson & Stewartson (1982). While all these studies were only concerned with the 
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flow in the equatorial plane, numerical solutions for the completc boundary-layer 
flow were given by Dennis & Ingham (1979) and Van Dommclen (1987). 
Navicr-Stokes solutions were presented by Dennis & Duck (1988). 

Except as an example of a basic unsteady separation process, the spinning sphere 
is also of interest because of its relation to problems in geology and mctcorology. It 
further turns out that the results apply equally well to axially symmetric bodies of 
general shape, provided that the body is symmetric about the equatorial plane (cf. 
Part 1 and Banks & Zaturska 1979). 

In  $4.2 of Part 1, Van Dommelen & Cowley (1990) used their Lagrangian theory 
to describe separation a t  a symmetry plane, including the structure close to the 
symmetry plane. In  $63 and 4 of the present paper, i t  is verified that the description 
does indeed apply to the important case of spinning bodies of the type discussed here. 
For this purpose, in $2 a Lagrangian numerical procedure is described. The 
Lagrangian procedure is found to be more accurate than the Eulerian Crank-Nicolson 
scheme of Banks & Zaturska (1979) and the Eulerian box scheme of Simpson & 
Stewartson (1982). It allows a precise verification of the presence of logarithmic 
terms in the expansions as proposed by Simpson & Stewartson (1982) ($5). Further, 
unlike the Eulerian schemes, the Lagrangian computation can be continued beyond 
the first occurrence of separation without apparent difficulties. The physical meaning 
of such a solution is not immediately clear, since interaction effects invalidate the 
equations in the immediate vicinity of the equatorial plane. Yet, in $6 we will argue 
that our solution can be extrapolated away from the equatorial plane to whore the 
governing equations are still correct. Thus our solution may provide an interesting 
first glimpse a t  the continued evolution of an unsteady separated flow. One 
remarkable result is that the unseparated vortex layer a t  the wall disappears quickly. 
In  $7 an analytical description for this process is derived which is in good agreement 
with the numerical data. 

2. Lagrangian formulation and numerical method 
The flow about the spinning sphere is most easily described in a spherical 

coordinate system in which x is the polar angle measured from the axis of rotation 
and y is the radial distance from the wall, scaled to eliminate the coefficient of 
viscosity. The corresponding velocity components are u and v, while w denotes the 
velocity in the azimuthal direction. The radius of the sphere and its angular velocity 
are scaled to unit values. 

In 52 of Part 1, Van Dommelen & Cowley (1990) transformed the boundary-layer 
equations to Lagrangian ‘particle’ coordinates 6 and q attached to the fluid. By 
convention, these are taken equal to the values of x and y a t  the time, t = 0, that the 
sphere initially starts to spin. Thus initially, the equator x = corresponds to = 

in the Lagrangian coordinate frame. But since the flow velocity is defined as the 
rate of change of particle position with time, the motion of the particles in the 
meridional direction, x = u, vanishes a t  the equator by symmetry. It follows that the 
particles initially a t  the equator stay there for all time : in the Lagrangian domain the 
equator remains a t  6 = in. The equation for the particle motion x = u is, further, 
trivial a t  the equator; the equation of interest is its 5-derivative: 

x,t = u.5, (2.1 a )  

where by convention a subscript comma denotes differentiation with respect to tlhe 
subsequent subscripts and the dot denotes differentiation with respect to time. At 
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the equator, the azimuthal Lagrangian momentum equation as given in Part 1 
becomes 

ti) = XT5W,aa+X,5X,5vW,v. (2.1b) 

All terms in the meridional momentum equation vanish by symmetry; the equation 
of intercst is the [-derivative of the equation a t  the equator: 

% 5 = X f P ,  57,q -x, 5", 57 u. 57 + %v -x3 5 x, 577) u, 5 -x, 5 w2. (2.1 c) 

Since x , ~ ,  u , ~ ,  and w are evaluated a t  the meridional plane E = &, they depend on 
and t only. 

The initial conditions are 
X,&O) = 1, U , 5 ( 7 ' 0 )  = 0, (2.ld, e )  

w(q,O) = 0 if 7 =!= 0, (2 . l f )  

where (2.1 d) reflects the convention to define 6 = x a t  t = 0. Further (2.1 e) and (2.lf) 
apply since the initial velocity (u, v, w) is assumed zero when the sphere is first given 
its spinning motion. 

The boundary conditions are 

X,&(O ' t )  = 1 ,  U,<(O, t )  = 0, w(0,t) = 1, (2 I 1 g-i) 

x,5(co,t) = 1,  U,[(GO,t) = 0, W(CO,t)  = 0, (2.lj-1) 

where (2.1 h) and (2.1 i )  follow from the fact that  the particles a t  the wall, 7 = 0, must 
follow the motion of the wall; for a rotating sphere, the azimuthal velocity a t  the 
equator w = 1 while the meridional velocity u vanishes uniformly on the sphere. The 
vanishing of the meridional velocity a t  the wall also implies that the particles a t  the 
wall keep their initial polar position x = 6, hence (2.lg) applies. Since in the external 
flow a t  7 = co both velocity components u and w vanish, (2.lj-Z) apply. 

The advantage of Lagrangian coordinates arises from the fact that the particle 
distance from the wall, y, occurs only in the continuity equation. The integral form 
of this equation, given in (2.6) of Part 1, simplifies by symmetry to 

This equation needs to be integrated only a t  times a t  which results are desired; it 
does not affect the numerical solution of (2.la-1). It also turns out that the 
continuity equation is the first one to become singular, so that numerical difficulties 
do not arise in the integration of (2.la-2). 

The present numerical integration follows the general lines of the procedure of Van 
Dommelen & Shen (1980). For example, to  achieve an effective distribution of mesh 
points across the boundary layer, an arctangent mapping was used, and the 
singularity a t  the impulsive start was eliminated by a further coordinate 
transformation. The Jacobian (2.2) was integrated using quadratic interpolation for 

x, 5' 
The Lagrangian equations (2.1) were discretisized by means of Crank-Nicolson 

central finite differences. The resulting implicit finite-difference equations were 
solved iteratively for x , ~ ,  w, and u,[ respectively by means of the tridiagonal 
algorithm. The iterations were continued until the error in the finite-difference 
equivalent of (2.la-c) was less than 3 x lo-*; this avoids the possible problems of a 
termination criterion based on the difference between iterates. To eliminate possible 
round-off errors, 16-digit numerical precision was used throughout. 
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Mesh 
points.. . 

Time step.. . 
t, 
t" 

(a)  t = 0 
0.25 
1 .o 
2.0 
3.0 
4.0 
4.3 
4.4 
4.5 
4.52 
4.54 
4.56 

t S  

5.0 
5.25 
5.39 
5.47 
5.5 
5.537 

( b )  t = 0 
0.25 
1 .0 
2.0 
3.0 
4.0 
4.3 
4.4 
4.5 
4.52 
4.54 
4.56 
4 

5.0 
5.25 
5.39 
5.5 
5.537 

129 

0.025 
4.575676 
5.5418 

- 0.56415 
- 

- 

- 

~ 

- 0.1441 7 
- 0.1 1450 
- 0.10469 
-0.09494 
-0.09300 
- 0.09106 
- 0.08913 
- 0.08761 
-0.04839 
- 0.02632 
- 0.01424 
-0.00741 
-0.00527 
- 

-0.40990 
~ 

- 

- 

- 

- 1.40385 
- 1.71445 
- 1.85470 
- 2.03105 
-2.07037 
- 2.11 148 
- 2.15450 
-2,18962 
-4.132 
- 9.026 

-22.34 
- 151 
- 

257 

0.0125 
4.575643 
5.5461 

- 0.5641 8 
- 

- 0.55025 
-0.35771 
-0.24414 
- 0.14445 
-0.11487 
- 0.10508 
- 0.09537 
- 0.09343 
- 0.09150 
- 0.08958 
- 0.08807 
-0.04859 
- 0.02653 
- 0.0 144 1 
- 0.00736 
- 0.00463 
- 

- 0.41 000 
- 

-0.41855 
-0.63387 
-0.89600 
- 1.40486 
- 1.71522 
- 1.85794 
- 2.03121 
- 2.07043 
-2.11 143 
-2.15432 
-2.18927 
-4.110 
- 8.903 

-21.63 
- 129 
- 

513 

0.00625 
4.575634 
5.5473 

- 0.56419 
- 
- 

-0.35771 
- 0.2441 6 
-0.14452 
- 0.1 1496 
-0.10518 
-0.09547 
-0.09354 
- 0.09 161 
-0.08969 
-0.08819 
-0.04866 
-0.02661 
-0.01449 
-0.00745 
- 0.00472 
-0.00115 

- 0.41002 
- 
- 

-0.63396 
- 0.896 18 
- 1.40513 
- 1.71543 
- 1.85810 
-2.03127 
- 2.07047 
-2.11143 
- 2.15429 
- 2.18920 
- 4.104 
- 8.873 

-21.45 
- 125 
- 1231 

1025 

0.003125 
4.575632 
5.5476 

-0.56419 
- 1.12666 
- 0.55025 
-0.35771 
- 0.2441 7 
-0.14453 
- 0.11498 
- 0.1052 1 
-0.09550 
- 0.09357 
- 0.09 164 
-0.0897 1 
-0.08821 
- 0.04867 
-0.02663 
-0.01452 
-0.00748 
- 0.00475 
- 0.00 1 18 

- 0.4 1003 
-0.20527 
-0.41858 
-0.63398 
-0.89622 
- 1.40520 
-1.71549 
- 1.85814 
- 2.03128 
- 2.07048 
-2.11144 
- 2.15429 
-2.18918 
- 4.103 
-8.865 

-21.41 
- 124 

-1171 

Banks & 
Zaturska 

4.5758 

- 0.564 190 
- 1.12668 
-0.55029 
- 0.35773 
- 0.24418 
-0.1446 
-0.1150 
- 

-0.0955 
- 0.0936 
-0.0917 
-0.0897 
- 
- 

- 

- 
- 

- 

- 

-0.41003 
- 0.20527 
- 0.41855 
-0.63395 
- 0.8961 9 
- 

- 
- 
- 

- 

- 

- 
- 
- 
- 
- 
- 
- 

Simpson & 
Stew artson 

4.57446 

- 

- 

-0.5502 
-0.3577 
- 0.244 1 
- 0.1445 
-0.1 149 
-0.1052 
-0.0954 
- 0.0935 
-0.0916 
- 
- 
- 
- 

- 
- 
- 
- 

- 

- 

-0.4186 
-0.6340 
-0.8963 
- 1.4058 
-1.7166 
- 1.8594 
- 2.0330 
- 2.0722 
-2.1133 
- 

- 

- 

- 

- 

- 

- 

TABLE 1 .  The wall shear a t  the equatorial plane of the spinning sphere. (a) Values of the wall 
shear w , ~  and ( b )  values for the wall shear gradient u, ,~ .  

Thus the major source of numerical inaccuracy should be the truncation error. To 
take account of this error, computations were performed a t  the four meshes listed in 
table 1, which compare favourably to the meshes used in the Eulerian computations. 

In contrast to the Eulerian calculations, no Richardson extrapolation was used. 
But if desired, it may be noted that the Lagrangian solution should provide a much 
better basis for repeated Richardson extrapolation than the Eulerian schemes. The 
reason is the smoothness of the Lagrangian solution discussed in the next section. 
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-1-1 

FIGURE 1. Lagrangian boundary-layer profiles in the equatorial plane of the impulsively spun 
sphere a t  the time t, = 4.575632 that separation starts. Here w is the azimuthal velocity component 
and u,< the Lagrangian gradient of the meridional velocity u. Further, x , ~  is the Lagrangian 
gradient of the polar particle position x. The separation particle T~ = 0.97188 is indicated by a solid 
dot. The condition of vanishing x,< implies a singular Eulerian velocity profile. 

Simpson & 
129 x 0.025 257 x 0.0125 513 x 0.00625 1025 x 0.003125 Stewartson 

t = 4  0.035 150 0.035127 0.035121 0.035120 0.0352 
4.3 0 .O 17546 0.017511 0.017501 0.01 7499 0.0176 
4.4 0.011318 0.011243 0.01 1240 0.0112 
4.5 0.00504 0.00491 0.00488 0.00486 0.0045 
4.52 0.00381 0.00362 0.00359 0.00359 0.0027 

- 

TABLE 2. The quantity ~ ~ , ~ ~ & - - ( t ~ - - t ) - ~  according to the present four meshes and according to 
Simpson & Stewartson (1982) 

3. Separation structure 
I n  solving the problem specified by (2.1), (2.2) in Eulerian coordinates, Banks & 

Zaturska ( 1979) discovered that the boundary-layer thickness becomes infinite a t  
some finite time t,. According to Sears & Telionis (1975), such singularities in a 
classical boundary-layer solution indicate separation. The singularity should be 
understood to mean that the local motion away from the wall becomes too strong to 
be described with boundary-layer scalings. As an example, Elliott, Cowley & Smith 
(1983) show that the interactive stage of unsteady two-dimensional separation 
occurs a t  a boundary-layer thickness O(Re-&), rather than the classical O(Re-i). 

The separation processes proposed in $4.3 of Part 1 are characterized by non- 
singular solutions x7[, u,(, and w to the Lagrangian boundary-layer equations (2.1). 
Singular behaviour should occur only in the continuity equation (2.2), caused by 
vanishing of x.[ inside the boundary layer. Such behaviour results in infinite values 
of the particle position y ,  leading to the infinite boundary-layer thickness observed 
in the Eulerian computations. 

The present numerical results, such as table 1 and figure 1, do show that the 
Lagrangian x,[, u,[ and w profiles remain regular, and that x,[ becomes zero. The first 
zero occurs a t  a point s located a t  T~ = 0.97188 at time t, = 4.575632. This time is in 
excellent agreement with the time that the Eulerian solution becomes singular, 
4.5758 according to Banks & Zaturska (1979) or 4.57446 according to Simpson & 
Stewartson (1982). (Values of the computational quantity used by Simpson & 
Stewartson to find the separation time are listed in table 2.) Yet, unlike the Eulerian 
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t 

4 

t 

5 

5.25 

5.39 

5.47 

5.5 

5.535 

7 
0.97189 
0.97185 
0.97186 
0.97188 

71 
0.41478 
0.41507 
0.41513 
0.41515 
0,28209 
0.28281 
0.28300 
0.28304 
0.20346 
0.20473 
0.20494 
0.20500 
0.1435 
0.1463 
0.1469 
0.1470 
0.1 I24 
0.1161 
0.1171 
0.1173 
- 
- 

0.0573 
0.0581 

W 

0.672593 
0.669262 
0.669249 
0.669240 

W1 

0.92405 
0.92389 
0.92385 
0.92385 
0.97 193 
0.97167 
0.97 159 
0.97 158 
0.98922 
0.98900 
0.98900 
0.98900 
0.99643 
0.996 10 
0.99606 
0.99605 
0.99831 
0.9981 1 
0.99805 
0.99804 
- 
- 

0.99978 
0.99977 

u, 5 

- 0.369784 
-0.369789 
- 0.369789 
-0.369790 

u, 5, 

-0.46260 
- 0.46196 
- 0.46 1 80 
- 0.461 76 
-0.7501 
-0.7454 
-0.7442 
-0.7439 
- 1.394 
- 1.370 
- 1.364 
- 1.363 
- 3.025 
- 2.874 
-2.841 
-2.834 
-5.33 
-4.89 
-4.78 
-4.75 
- 

- 

-24.0 
-23.2 

x3 177 

0.689301 
0.6891 16 
0.689064 
0.689062 

72 
1.81402 
1.81422 
1.81426 
1.81427 
2.09452 
2.09465 
2.09468 
2.09469 
2.23830 
2.23844 
2.23846 
2.23846 
2.31751 
2.31763 
2.31765 
2.31766 
2.34681 
2.34686 
2.34686 
2.34687 

~ 

- 

2.38259 
2.38259 

u. 57 

- 0.04000 
- 0.0401 9 
- 0.04026 
-0.04026 

U)2 

0.39848 
0.39838 
0.39837 
0.39837 
0.33781 
0.33776 
0.33774 
0.33774 
0.31096 
0.3 1089 
0.31088 
0.31088 
0.29725 
0.29720 
0.29719 
0.29718 
0.29231 
0.29231 
0.29231 
0.29231 
- 
- 

0.28648 
0.28648 

x* 1777 

-1.1328 
-1.1291 
-1.1276 
-1.1274 

u, 1 2  

- 0.40755 
-0.40763 
- 0.40764 
- 0.40764 
-0.41589 
-0.41597 
- 0.41599 
-0.41600 
-0.41926 
-0.41937 
-0.41939 
-0.41939 
- 0.42090 
- 0.42 10 1 
- 0.42103 
- 0.42103 
-0.42152 
- 0.42158 
- 0.42 I60 
- 0.42 1 6 1 

__ 
- 

-0,42227 
-0.42228 

TABLE 3. Stationary point trajectory (figure 6) and corresponding Lagrangian quantities for the 
four increasingly fine meshes of table I. Note tha t  these values do not Richardson extrapolate ; they 
were found from second-order interpolation between the mesh points. However, at  the time t ,  of 
first separation, the stationary point happens to fall nearly exactly on a mesh point of the finest 
two meshes. The four values for each quantity are in order of increasing accuracy. 

separation profiles, the Lagrangian profiles of figure 1 do not show any sign of 
singular behaviour. 

The vanishing of x,< leads to a singular solution of the cont,inuity equation (2.2) for 
the y-position of the particles. To find the structure of this singularity, x , ~  can be 
expanded in a finite Taylor series expansion around the point s :  

( 3 . 1 ~ )  

Since x , ~  has its first zero a t  time t,, it must be a minimum, with x,[ still positive 
elsewhere, so that there is no term linear in 87 in the Taylor series. The generalized 
form of this condition was given in $4.3 of Part 1. The precise requirement for the 
Taylor series (3.1 a)  to be valid is that the appearing derivatives are well-defined, i.e. 
continuous near the point s. The computed x,k?l and u,< profiles a t  time t,, figure 1, 
show no sign of singular behaviour a t  point s, and prove highly accurate according 
to comparisons for varying mesh size. As an example, table 3 lists the convergence 
of the values of x , ~ , , ~  and u,< a t  the point s, along with their 7-derivatives. 
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The Taylor series expansion (3.1a) may be substituted into the continuity 
equation (2.2) to find the vertical position y of the particles: 

(3.1 b)  

p = ( - 2 X & / p l ) t ,  r) = O(1). (3.1 c,  d )  

Here, the omission of the subscript' comma indicates that the value of the derivative 
at the point s is meant. This paper follows the Eulerian definitions of the constants 
closely; in terms of the notation used in Part 1 ,  P corresponds to 2/3yp,, and /3/xky 
to POP2. Our value for the constant p = 0.71387, table 3, is in good agreement with 
the 0.71 of Banks & Zaturska (1979) and the 0.712 of Simpson & Stewartson (1982). 
Except for the difference in the definition of the constants, the vertical position of the 
particles (3.16) is identical to the elliptic function given in (4.9) of Part 1 when 
evaluated a t  the symmetry plane. However, the derivation given here is 
mathematically a bit more rigorous since no asymptotic expansions were used. 

Figure 2 shows Eulerian velocity profiles in terms of the above scaled coordinate 
Y and the scaled Eulerian velocity gradient : 

(3.2a, b)  

In these velocity profiles, the particles q < qs are found in a wall layer near Y = 0 (see 
(3.1 b))  ; similarly the particles q > qs are located in a separating layer near pY = 27r. 
The part 0 < PY < 27r comprises most of the Eulerian velocity profile, yet i t  
corresponds to only a small vicinity Sq = O((Stl2) of the point s in the Lagrangian 
profile. 

The last observation implies that  for 0 < PY < 2n, a Taylor series expansion for 
the Lagrangian solution is applicable. The Lagrangian coordinate q may sub- 
sequently be eliminated in favour of Y by means of (3.1 b) to find asymptotic 
expressions for the Eulerian velocity profiles : 

w w,, 

u,x - -/Stl-'t( 1 - cos (BY)). 

(3.3a) 

(3.3b) 

To the order of approximation shown so far, the velocity profiles may alternatively 
be found from the expressions given in $ 4  of Part 1 .  

The scaling (3.16) of the variable Y compensates for the rapid expansion of the 
region of particles near qs. This scaling leads to the apparent thinning of the wall 
layer and the separating layer in the velocity profiles of figure 2 :  in terms of the 
original coordinate y ,  these two layers remain of finite thickness. 

To find the separation structure to  higher order of approximation, i t  is more 
convenient to replace the finite Taylor series expansion (3.1 a )  in favour of a formal 
matched asymptotic expansion. The proper inner q-coordinate E near the particle qs 
can easily be found by applying Van Dyke's (1975) guiding principles : clearly the 
reason for the non-uniformity in the continuity equation (2.2) is the vanishing of x , ~  
a t  the particle vS. Removal of this non-uniformity requires that the time-dependent 
term in the Taylor series expansion (3.1 a )  is retained in the inner region. On the other 
hand, the matching with the wall and separating layers can only be done when the 
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5 
Y 

10 

FIGURE 2. Eulerian velocity profiles when the time of first separation is approached. Y is a scaled 
distance (3.1 b )  from the wall and G is the scaled rneridional velocity gradient u,= defined in (3 .2a) .  
Comparison of the profiles of the azimuthal velocity w with the one of figure 1 shows that near 
separation most of the Eulerian velocity profile corresponds to only a small vicinity of the 
stationary point vs of the Lagrangian profile figure 1. 

second-order term is retained also. Therefore an inner coordinate E* will be defined 
as 

(3.4a) 

which is also consistent with (3. I b ) .  An inner dependent variable AY* can be defined 
as 

(3.4b) 

where y,(t) denotes the vertical distance of the particle qs from the wall, a distance 
which has been subtracted in order to  avoid the appearance of logarithmic terms in 
the Lagrangian inner expansions. 
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With the inner scalings known, it is a simple matter to integrate (2.2) to find the 
particle position : 

AY* = arctan (E*) + -@In (1 + E*2) + +..., (3.5a) 

(3.5 b-d)  

The Eulerian velocity profiles are found by a Taylor series expansion of the 
Lagrangian profiles, followed by the elimination of the Lagrangian coordinate using 

G - a( 1 + cos 2AY*) + Ist($B sin (2AY*) In (a( 1 + cos 2AY*)) + . . . , ( 3 . 6 ~ )  

(3.6b) 

The asymptotic value of the azimuthal velocity w, is easily found by evaluating the 
Lagrangian w-profile figure 1 a t  the separation point s. The various derivatives are 
found by numerical differentiation of the Lagrangian separation profiles and 
evaluation a t  point s. Since in general the point s does not coincide exactly with a 
mesh point, interpolation is needed in the evaluation. 

The above Eulerian results agree with the inner structure of Banks & Zaturska 
(1979) as modified by Simpson & Stewartson (1982). 

(3.5a) : 

w - wS+16tJ?-tanAY*. 1 Pw 

x54v 

4. The wall and separating layers 
The inner solution derived in the previous section can be matched below, a t  

E* = - CO, to a wall layer of particles 7 < y,, and above, a t  E* = CO, to a separating 
layer of particles 7 > 7,. I n  the wall layer, all variables including the particle position 
y are non-singular since the integral (2.2) does not involve the singular point 7,. The 
asymptotic description of the wall layer is therefore a Taylor series expansion in time 
(cf. (3.24) in Part 1 ) :  

(4 . la ,  b )  

It is not possible to add singular terms of the general form 16tJa1n16tl to this 
expansion, for substitution into the Lagrangian equations (2.1) and (2.2) would lead 
to inconsistencies. 

The Eulerian asymptotic expansion of the wall layer is found by formal elimination 
of 7 in favour of y :  

m i  

The vertical velocity component v is simply the integral of u , ~  with respect to y. 
Substitution of the expansions (4.1) into the equations of motion determines the 

x@) 9 5  ' u(") 9 5  ' w("), (n > 0),  and the (n 2 0), in terms of the separation profiles xf;), 
u:!), and w(O). However, self-consistency does not pose constraints on the shape of the 
separation profiles themselves. This does not necessarily mean that any separation 
profile will correspond to a realistic solution : if we use the linear heat equation as a 
model, a velocity profile can only correspond to  a solution at earlier times if its 

21 FLM 210 
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Fourier transform decays sufficiently rapidly with the wavenumber. For this simple 
model problem, suitable profiles, which are arbitrary close to incorrect solutions, can 
be found by truncating the Fourier transforms of the incorrect profiles a t  large 
wavenumbers. 

To examine whether modification of the velocity profile in the wall layer is indeed 
possible, the computations were repeated for the case in which the sphere is gradually 
brought to a halt in the time interval 4 < t < 4.5( < t,). The choice t = 4 was made 
because a crude preliminary estimate suggested that t,-4 was too short a time 
interval for diffusion to reach the particle ys. The velocity change was prescribed as 

( t  - 4.25) 
T E  

1 
1 +exp (2T/(1 -T2)) ' 0.25 ' 

w(0,  t )  = (4 .3a,  b)  

As can be expected, the results in figure 3 show that the Lagrangian separation 
profiles are dramatically altered near the wall. Similarly figure 4 shows the difference 
in the Eulerian velocity profiles in the wall layer. However, the separation at particle 
ys proceeds exactly as before: the spin of the sphere is brought to a halt but 
separation continues. At and beyond particle s, the Lagrangian velocity profiles with 
and without spin-down agree within lop7. 

The asymptotic description of the separating layer proceeds in the same manner 
as for the wall layer, with one distinction : the vertical position y is now singular, The 
reason is evident from the integral (2.2), which turns singular in passing point s. The 
resolution, given in $3  of Part 1 ,  is to refer y to a reference position y+ in the 
separating layer. Many definitions are possible for this reference, but a convenient 
example is 

~ ( y ' ,  t )  = 0 . 0 5 ~ ( 0 ,  t ) .  (4 .4)  

For this definition y+ corresponds to a typical boundary-layer thickness. The 
continuity equation (2.2) may now be written as 

(4 .5a,  b)  

where y" is regular in the separating layer. Thus, when y is replaced by y" and v with 
6 = y", the description of the separating layer becomes of the same form (4 .1) ,  (4.2) as 
for the wall layer: 

m i  

(4 .6a,  b)  

( ~ , ~ , v " , w )  = C - I s t ( n ( u * ~ " ' ( ~ ) , b * ( n ) ( ~ ) , w * ( n ) ( ~ ) )  for = O(1) .  (4 .7a ,  b)  
" O 1  

n=o n !  

5. The emergence of logarithmic terms 
I n  the previous two sections, the asymptotic expansions for the inner region and 

the wall and separating layers have been found. However, the position ys of the 
particle y, in the inner expansion, and the reference position y+ in the separating 
layer remain undetermined. 
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I I 

T 2 -- 4 6 
u, C 

FIGURE 3. Lagrangian profiles when the spin of the sphere is smoothly brought to a halt. 
Comparison with the previous Lagrangian separation profiles, figure 1, shows that the velocity 
change generates a sublayer at the wall. However, this layer does not reach the particle 7% in time 
to halt the separation process. 

FIGURE 4. Eulerian profiles corresponding to figure 3 

To find ys,  the inner expansion (3.4), (3.5) can be matched with the wall layer (4.1), 
to  yield 

where the coefficients /3 and B are given in (3.56, c ) .  
21-2 
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1 

I I 

0 0.5 

F I G U R E  5.  Presence of higher-order logarithmic terms in the expansions for the impulsively spun 
sphere. According to  the original proposal of Banks & Zaturska (1979), the upper curve should 
linearly approach the value 4.6 indicated by the dot. But according to the present results the upper 
curve contains a logarithmic term, and only after subtraction of this term does the lower curve 
approach a constant value. See text for a comparison with the work of Simpson & Stewartson 
(1982). 

The logarithmic term will lead to a corresponding logarithmic term in the Eulerian 

( 5 . 2 ~ )  

expansion of the velocity profile (3 .6u) ,  when rewritten in terms of Y :  

G - a( 1 - cos/3Y) + $ A  sinPY + . . . , 
1 

A - -2/3BISt(~ln-+(-2/?Bln ($(I-cos (/3Y))+Ao)1Gt(;, 
IStl 

(5 .2b )  

where A,, is a constant depending on the wall layer profile. 
The expansion originally proposed by Banks & Zaturska (1979) was of the same 

form (5 .2u) ,  but they proposed a different coefficient A ,  without the logarithmic 
term : 

A,, - 4.61Stli. 

To verify that there is in fact a missing logarithmic term, a numerical variable 
approximating A was constructed as 

(5.3u) 
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where & and yZ are the two Y-positions where G = f. For the Banks &. Zaturska 
(1979) proposal a - A,,+O((Stl), while for ( 5 . 2 b )  

(5 .3b )  

According to the present more accurate numerical results, the computed values for 
a do not appear to approach the constant given by Banks & Zaturska (1979) (figure 
5). If, however, the logarithmic term in (5.3b) is first subtracted from the curve, t,he 
required approach to a constant does become evident. 

Simpson & Stewartson (1982) were the first to point out t,he presence of 
logarithmic terms based on an Eulerian description of the flow. However, our result 
B = -0.3957 agrees poorly with the value -0.457 found by Simpson & Stewartson 
(1982), who obtained their value from subtracting two large quantities and fitting of 
a straight line to the resulting smaller quantity. We submit that our value is 
independently supported both by the apparent convergence of the results in table 3,  
using the definitions in (3.5b, c ) ,  and also by its apparent success in eliminating the 
blow up of the curve figure 5 .  

With the inner solution now fully determined by (5.1), the position of the 
separating layer follows from matching its expansion for y ,  (4.5), (4.6), to the inner 
region (3.4), (3.5), (5.1). The matching requires 

27c 
y+ - -+O(l) ,  

PlStp 
(5.4) 

The O(1) constant is related to the arbitrariness in the possible definition of the 
reference position y+ and the shape of the separation profiles in the wall and 
separating vorticity layers. 

6. The first separated stages 
Compared to the Eulerian computations, the most remarkable aspect of the 

Lagrangian con~putation is the absence of any numerical difficulties in the integration 
of the momentum equations near the initial separation time t,. The question arises 
of whether the Lagrangian solution continues to exist beyond this time. The 
numerical evidence in tables 1 and 3 and figures 6-8 indicates that a formal solution 
does indeed exist for a finite range of times t, < t < t, beyond initial separation. Even 
a t  1025 points across the boundary layer, there is no sign of convergence difficulties 
nor of instability. And theoretically, a t  least the coefficient of the second-order 
viscous derivatives in (2.1 b )  and (2.1 c)  remains positive, so that the time-like 
direction remains positive. 

For these reasons we are led to assume that the Lagrangian boundary-layer 
problem does have a formal solution beyond initial separation. Whether such a 
formal solution has physical meaning is a second and separate question. Certainly a t  
the equatorial plane itself, the separation must set up interactive processes which 
invalidate the further use of the original equations (2.1). 

However, there is a second interpretation for the solution. Van Dommelen (1987) 
computed the Lagrangian solution to the full two-dimensional boundary layer 
around the sphere, a solution which also appears to remain regular at and beyond the 
separation time t , .  Now, if it turns out that the interactive effects remain restricted 
to a small vicinity of the equator, say to x = :rc+O(Re-") with a > 0, then the two 
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t s  

t 

FIGURE 6. Trajectory of vanishing x , ~  for the impulsively spun sphere in the Lagrangian equatorial 
(7, @plane. In contrast to the Eulerian case, the Lagrangian solution does not appear to terminate 
a t  the time t ,  that separation starts. But near the settle-down time t,  = 5.5476 when the lower 
stationary point attaches itself to the wall, the Lagrangian solution turns singular also. 

half boundary layers x < in and x > an would continue to describe the correct 
asymptotic limit away from the equator. These two half boundary layers would near 
x = in match with the small interactive region. The notion of a limited interaction 
region seems in line with steady descriptions (Stewartson 1958; Smith & Duck 1977), 
and the formation of an equatorial jet (Dennis & Ingham 1979; Dennis & Duck 
1988). For a limited interaction region, the present solution describes the flow in the 
matching region Re-" 4 1x-$~l 4 1 since it is the equatorial limit of the two- 
dimensional Lagrangian solution. 

Whether or not these arguments apply, the boundary-layer equations are 
important enough by themselves that their possible behaviour is worth study. Note 
that a solution to the boundary-layer equations may be physically relevant in some 
settings even if it does not apply in other settings (cf. Smith 1982). 

The initial characteristics of the continuity equation beyond time t, were found in 
54.2, figure 3(i), of Part 1 ,  and are such that the singular behaviour in the continuity 
equation remains restricted to x = in. Because of the boundary conditions (2.1 g ,  j )  
for x , ~ ,  beyond time t, the single zero for x , ~  must separate into two zeros, a t  positions 
which will be denoted as yl and y2. Computed values for v1 and yz are given in table 
3 and shown in figure 6 .  The two main boundary layers x < $ 7 ~  and x > in each split 
into three layers near the equatorial plane. The layer of particles y < yl remains close 
to the wall. The middle layer of particles rl < 7 < y2 penetrates relatively far from 
the wall on account of the strong growth in y near yl. The upper 1aye.r of pwticleu 
7 > qz  penetrates still further from the wall because of the additional growth in y 
near y2. The middle layer further ejects a finite mass flow into the vicinity of the 
equatorial plane. It may be conjectured that this mass will develop into the 
equatorial jet. 

7. The settle-clown of the lower stationary point 
When the time t, beyond the time t, of first separation is approached, new 

phenomena start to show up. The lower stationary point approaches the wall, figure 
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0.5 

(1, - t)*i 

FIGURE 7. Behaviour of the Lagrangian solution when the settle-down time t, is approached. The 
scaled variables are defined in the text. The solid dots denote the values 0.5961, 0.2824, and 0.2745 
according to the asymptotic solution, figure 9. 

6, table 3, and the local value of the Lagrangian gradient u,& appears to blow up. 
Similarly the wall shear gradient u, f,, rapidly increases, table 1. The ' settle-down ' of 
the lower stationary point is depicted in figure 6. No significant singular behaviour 
is evident at the upper stationary point, cf. table 3. 

Since an inviscid flow does not turn singular in the Lagrangian coordinate system, 
it is likely that viscous effects are a primary influence near settle-down. A balance of 
the viscous and convective terms in the Lagrangian boundary-layer equations (2.1) 
is consistent with an inner coordinate 

(7 . la ,  6 )  

Indeed the E-position E ,  of the lower stationary point appears to remain non-zero 
and finite near time t,, figure 7. Since x,$ = 1 at  the wall, and vanishes at  the 
stationary point, the appropriate asymptotic expansion should be 

(7.1 c, d )  

This agrees with figure 7, where the U-value U,, at the stationary point and the 
minimum value Umin appear to remain finite. In  addition the meridional wall shear 
gradient (uzg in Eulerian coordinates or equivalently u,~,, in Lagrangian ones) should 
be of order  TI-:. This may be verified independent17 of any estimated value for t,  by 
examining whether the ratio (ti, nli/lu, .If = O( l~l-xi)/O( 171-lt) = O( 1) remains finite. 
The numerical results shown in figure 8 do clearly support this. The correspondingly 
scaled Eulerian variables are 

V 
V = T .  

c 
u,z = -- y = )71iY, 14 ' 171% 

These viscous scalings are not to be confused with the inviscid ones of $3. The 
azimuthal velocity appears to approach a unit value, cf. w , ~  in table 1 and w1 in 
table 3. 
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( t ,  - t)'? 

FIUURE 8. The agreement in wall shear with the asymptotic solution, figure 9, when the settle-down 
time t, is approached. The solid dot denotes the value 1.101615 according to the asymptotic 
solution, figure 9. 
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I 5 I 

0 1 0 I 

FIUCRE 9. Proposed asymptotic solution in the vicinity of settle-down of the lower stationary point 
in figure 6. The Eulerian solution 0 < Y < co is equivalent to  the lower Lagrangian solution 
0 < E < E,. 



Lagrangian description of unsteady boundary-layer separation. Part 2 643 

xlr. x:; U u' u" Solution ? 5 
E < E,  0 0.92099 2.015 -0.27450 0.13975 1.02 
E > E,  0 0.92091 2.02 -0.27450 0.13977 1 .02 

TABLE 4. First few Lagrangian derivatives of the solution figure 9 at the stationary point E ,  

0 -0.92 0.10 x 10 -0.56 -0.23 0.07 0.65 0.24 x 10 
0.1 1 x lo2 0.73 x loe 0.65 x lo3 0.74 x lo4 0.10 x 106 0.17 x lo7 0.33 x 10' 0.72 x lo9 
0 . 1 8 ~  10" 0 . 4 8 ~  10l2 0 . 1 4 ~  IOl4 0 . 4 7 ~  loAb 0 . 1 6 ~  0 . 6 3 ~  0 . 2 6 ~  loao 0.11 x loz2 
0.52 x loz3 0.25 x loaa 0.13 x lo2' 0.72 x lo** 0.41 x loao 0.25 x 0.16 x - 

TABLE 5. Coefficients C ,  in the self-consistent Taylor series expansion (7.2) to the solution figure 
9, for n = 0,1, . . . ,30. They show no evidence of a non-zero radius of convergence. The tabulated 
results do not depend critically on the precise values of Eo and C,. 

Substitution of the inner expansion (7 . la ,  b )  into the Lagrangian equations ( 2 . 1 ~ )  

(7 . lh)  
yields 

U +  iEU' = x26 U"- x,[ 2:s U' -I- (x:!- x , f ;  xl;) U,  

u = px:& ( 7 . l i )  

where primes denote derivatives with respect to E.  The equivalent Eulerian problem 
reads 

G - ( V + i Y )  G + GZ - G = 0, (7.  1 j )  

G =  V', (7.1 k) 

where primes now denote derivatives with respect to  Y .  The Eulerian solution is only 
defined below the stationary point E,. 

RungeKutta  solutions to the inner problems (7.1 h, i) and (7.1j, k) are shown in 
figure 9. Briefly, the parts 0 < Y < co and 0 < E < E ,  were found from upward 
shooting, and seeking the least, singular solution. The part E,  < E < 00 was found 
from downward shooting, starting from a self-consistent asymptotic series truncated 
a t  the smallest term. 

It is interesting to conjecture about the nature of the Runge-Kutta solution near 
the point E,. In  both Part 1 and in this paper, we have presented evidence in support 
of the assumption that the Lagrangian solution is regular at and beyond the time of 
initial separation t,. Unless a further inner region exists, that would require that the 
Runge-Kutta solution is also regular a t  point 8,. This seems to agree with table 4, 
which shows that finite and unique values for the first few Lagrangian derivatives 
exist a t  E,. In  addition, for finite first derivative of x , ~  the self-consistent local 
expansion for the solution assumes the form of a Taylor series: 

with the first 30 coefficients listed in table 5 .  When truncated a t  the smallest term, 
this series seems to give an excellent local approximation to the solution; it 
reproduces x,[ and U to four-digit accuracy within 0.458 < E < 0.7. However, the 
coefficients in table 5 do not show evidence of a non-zero radius of convergence ; the 
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(t,--t)*i 0.7218 0.5402 0.3953 0.2781 0.2180 0.1661 
0.1503 0.1326 0.1166 0.1030 

(t,-t)t 0.7400 0.5455 0.3970 0.2786 0.2182 0.1661 
0.1503 0.1327 0.1166 0.1030 0.0748 

TABLE 6. Comparison between the apparent time from settle-down as defined in (7.3) and the 
true value. (Mesh 1025 x 0.003125 ; t, = 5.54760.) 

0.0748 - 

- 

series seems applicable in an asymptotic sense only. Whether the same non- 
convergence holds for the Lagrangian solution for t, < t < t, is uncertain ; only 
infinite values of the lower-order derivatives reflect numerical inaccuracy - non- 
convergence of the Taylor series around a point is not necessarily evident through 
reduced accuracy or convergence difficulties. 

According to figures 7 and 8, the asymptotic solution of figure 9 is in good 
agreement with the numerical data. I n  both figures 7 and 8, in order to  avoid the 
difficulty in choosing a precise value for time t,, an apparent time difference (t,-t)* 
was defined based on the asymptotic result u , , ~  = - G'(O)/ l~ lg.  After differentiation 
with respect to time, this relation may be solved for 7 to give the approximation 

-', G'(0) = 1.277980908. (7.3a, b )  

Table 6 shows that this apparent time difference is in good agreement with the real 
time difference near time t, (which also provides more support for the applicability 
of the Runge-Kutta solution). 

Summarizing the results, it would seem that the Lagrangian solution can be 
continued through separation until the lower stationary point reaches the wall. 
Beyond that time, the limiting singular behaviour of the main two boundary layers 
2 and x >  ir near the equatorial plane can possible only be found from a 
complete integration of these layers. 

8. Concluding remarks 
Van Dommelen & Cowley (1990) showed that self-consistent unsteady separation 

processes can be derived by assuming a smooth Lagrangian solution. TO give the 
strongest possible verification that this concept is physically meaningful, in this 
paper the equatorial boundary-layer separation for the impulsively spun sphere was 
recomputed. With only one spatial dimension, this case allows excellent numerical 
accuracy. Our scheme appears to be the most accurate yet;  its separation time is 
accurate to seven digits before using Richardson extrapolation. 

Even when we used over a thousand points across the boundary layer, we could 
not observe any deviations from the smooth Lagrangian solution proposed by Van 
Dommelen & Cowley (1990). Derivatives up to  third order could easily be determined 
to five digit accuracy, cf. table 3. Derivatives of still higher order would be difficult 
to evaluate, but they play no significant part in the final separation structure. 
Moreover, singular behaviour of the higher-order derivatives would tend to render 
the evaluation of the lower-order derivatives more difficult, and we observed no 
evidence of that. 

xumerical continuation of the boundary-layer solution beyond the time of first 
separation showed that the wall vorticity layer disappears in a finite time. Whether 
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a similar process occurs for the non-interactive solution of asymmetric two- or three- 
dimensional separation, in which the separation structure is in motion compared to 
the wail, remains unknown. 

During parts of this investigation, the author was supported by the ONR, the 
AFOSR, and ICOMP, NASA Lewis. 
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